A hydrodynamic mechanosensory hypothesis for brush border microvilli.

نویسندگان

  • P Guo
  • A M Weinstein
  • S Weinbaum
چکیده

In the proximal tubule of the kidney, Na(+) and HCO(3)(-) reabsorption vary proportionally with changes in axial flow rate. This feature is a critical component of glomerulotubular balance, but the basic mechanism by which the tubule epithelial cells sense axial flow remains unexplained. We propose that the microvilli, which constitute the brush border, are physically suitable to act as a mechanosensor of fluid flow. To examine this hypothesis quantitatively, we have developed an elastohydrodynamic model to predict the forces and torques along each microvillus and its resulting elastic bending deformation. This model indicates that: 1) the spacing of the microvilli is so dense that there is virtually no axial velocity within the brush border and that drag forces on the microvilli are at least 200 times greater than the shear force on the cell's apical membrane at the base of the microvilli; 2) of the total drag on a 2.5-microm microvillus, 74% appears within 0.2 microm from the tip; and 3) assuming that the structural strength of the microvillus derives from its axial actin filaments, then a luminal fluid flow of 30 nl/min produces a deflection of the microvillus tip which varies from about 1 to 5% of its 90-nm diameter, depending on the microvilli length. The microvilli thus appear as a set of stiff bristles, in a configuration in which changes in drag will produce maximal torque.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanosensory function of microvilli of the kidney proximal tubule.

Normal variations in glomerular filtration induce proportional changes in proximal tubule Na+ reabsorption. This "glomerulotubular balance" derives from flow dependence of Na+ uptake across luminal cell membranes; however, the underlying physical mechanism is unknown. Our hypothesis is that flow-dependent reabsorption is an autoregulatory mechanism that is independent of neural and hormonal sys...

متن کامل

The enterocyte microvillus is a vesicle-generating organelle

For decades, enterocyte brush border microvilli have been viewed as passive cytoskeletal scaffolds that serve to increase apical membrane surface area. However, recent studies revealed that in the in vitro context of isolated brush borders, myosin-1a (myo1a) powers the sliding of microvillar membrane along core actin bundles. This activity also leads to the shedding of small vesicles from micro...

متن کامل

Intestinal Brush Border Assembly Driven by Protocadherin-Based Intermicrovillar Adhesion

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border ...

متن کامل

Brush border myosin-I microinjected into cultured cells is targeted to actin-containing surface structures.

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When intro...

متن کامل

Some Aspects of the Evaluation of Brush Border Enzymuria Originating from Proximal Renal Tubules as Screening Test in Patients with Psoriatic Arthritis

Brush border morphology with the brush epithelium, increases the cell surface, especially useful for absorption. The cells that absorb supstances have great necessity of contact surface with substances in order to be efficacious. The luminal surface of the epithelial cells from this segment of the nephron is covered with densely packed microvilli that form border, whish can be seen under light ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2000